报告题目: 粘性量子磁流体-向列型液晶流解的整体存在性和渐进性
报告人:王修庆, 昆明理工大学 理女优无码
报告时间:2025年10月18日(星期六)上午10:30--11:30
报告地点:老办公楼214
报告摘要:In this paper, we consider the 3D Prandtl equation in a periodic domain and prove the local existence and uniqueness of solutions by the energy method in a polynomial weighted Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the Crocco transform has always been used with the general outer flow U not equal constant, this Crocco transform is not needed here for 3D Prandtl equations. We use the skill of cancellation mechanism and construct a new unknown function to show that the existence and uniqueness of solutions to 3D Prandtl equations (cf. Masmoudi and Wong (2015)) which extends from the two dimensional case in to the present three dimensional case with a special structure.
报告人简介: 王修庆,现为硕士生导师。2021年在东华大学获理学博士学。学术研究方向为偏微分方程理论及其应用,目前主要关注液晶方程、边界层方程的适定性及Camassa-Holm方程的吸引子问题,在Journal De Mathematiques Pures Et Appliquees(T1);Applied Mathematics and Optimization;Journal of Mathematical Physics;Communications on Pure and Applied Analysis等SCI杂志期刊上发表学术研究论文十余篇,出版与边界层方程相关的学术专著一部,主持云南省科技厅基础研究面上项目和云南省教育厅科学研究基金项目。